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Abstract

The search for a universal solution of the equations of motion for a
satellite orbiting an oblate planet is a subject that has merited great
interest because of its theoretical and practical implications. Here, a
complete first-order perturbation solution, including the effects of the
Jo terms in the planet’s potential, is given in terms of standard orbital
parameters. The simple formulas provide a fast method for predict-
ing satellite orbits that is more accurate than the two-body formulas.
These predictions are shown to agree well with those of a completely
numerical code and with actual satellite data. Also, in an appendix, it
is rigorously proven that a satellite having negative mechanical energy
remains for all time within a spherical annulus with radii approximately

equal to the perigee and apogee of its initial osculating ellipse.



1 Introduction

A characteristic feature of practical orbit prediction is that the engineer may deal with
numerous satellites in a great variety of orbits. Under these circumstances analytical relations
which can quickly approximate an orbit may be far superior to large numerical programs.
While many analytical models have been developed for the artificial satellite age, most are
not used in practical orbit prediction because they violate one or more of the following

principles:

e The method should provide a solution that is significantly more accurate than the

two-body solution.
e The real physical effects of the orbit should be easily distinguishable in the solution.
e The solution should be universal; it should be valid for all orbital parameters.

The problem of predicting the motion of a satellite perturbed only by the oblateness of the
planet has received considerable attention following the first launchings of artificial satellites
about the Earth. Some of the studies of this problem by means of general perturbation
theories are listed at the end of this paper. Techniques have involved expansions in powers
of \/.J5, averaging processes, the use of spheroidal coordinates, and the edifice of Hamiltonian
mechanics. It is not the intention of this present paper to compare the various methodologies
used. Suffice it to say that many researchers believe a solution which embodies all of the
above principles was not achieved (e.g., see Taff).

The basic procedure used in this paper to solve the differential equations of motion is
the perturbation technique known as the Method of Strained Coordinates. This technique
was first applied to the title problem by Brenner, Latta, and Weisfield. Using a mean orbital
plane to specify an arbitrary orbit, they were only able to obtain a partial solution (e.g., the

eccentricity was assumed small and initial conditions were not considered).



Here we use coordinates in the true orbital plane to cast the differential equations into a

simplified form, as was originally done by Struble.

2 Orbital Kinematics

Figure 1 shows the usual reference system of spherical coordinates (r,a, 3). The radial
distance r is measured from the center of the planet O to the satellite S. The line O~ is in
a direction fixed with respect to an inertial coordinate system. The right ascension « is the
angle measured in the planet’s equatorial plane eastward from the line O~y. The declination
or latitude 3 is the angle measured northward from the equator. The position vector r of

the satellite in the spherical coordinate system is
r = r(cos acos F)by + r(sin a cos F) by + 7(sin F) b (1)

where (b, bs, bs) are orthonormal base vectors fixed in the directions shown.

We can also locate the satellite by its polar coordinates (r, §) within a (possibly rotating)
orbital plane that instantaneously contains its position and velocity vectors. Here 6 is the
argument of latitude, i.e., the angle measured in the orbital plane from the ascending node to
the satellite. The orbital plane is inclined at an angle ¢ to the equatorial plane and intersects
the equatorial plane in the line of nodes, making an angle €2 with the O~ line.

We introduce another orthonormal set of base vectors (B, By, B3) which move with the
satellite so that By is in the direction of the position vector r, B, is also in the orbital plane,
and B3 = By x B,. The basis (by, by, bs) may be transformed into the basis (B, By, B3) by
a succession of three rotations. First the basis (by, by, b3) is rotated about the bs direction
by the angle €2, next the basis is rotated about the new 1-direction by the angle 7, and
finally the basis is again rotated about the new 3-direction by the angle #. The two sets of

base vectors are related by the product of the rotation matrices representing each successive



rotation (as explained in the book by Danielson):

B, cosf sinf 0 1 0 0 cos sinQ 0 b; |
By, | = | —sinf cosf 0 0 cosi sinig —sinQ cosQ 0 by (2)
B, 0 0 1] |0 —sini cosi 0 0 1] | by |
or
B, cos @ cos €2 —sinf cosisin €2 cosfsin) +sinfcosicos ) sinfsini | [ by
B, | = | —sinfcos{2 —cosfcosisin{) —sinfsin{) + cosfcosicos{) cosfsini b,
B; sin ¢ sin {2 —sinzcos {2 cosi | | bs

The position vector r has only one component in the rotating basis:
r=rB; (3)
Using the first of equations (2), we obtain the components of r in the fixed basis:
r = r(cosf cosQ — sin f cosisin Q)b

+7(cos fsin  + sin 6 cos i cos )by + r(sin f sin i)bs (4)

Equating the components of equations (1) and (4), we can obtain the following relations
among the angles («, 3) of the spherical coordinate system and the astronomical angles
(1,9,0):
sin f = sinfsin (5)
cos 3 = cos f sec(a — )

The velocity dr/dt of the satellite is obtained by differentiating (3) with respect to the

time ¢:
dr  dr B,
dr _dr 4B, 6
a @t T T (6)

Since the orbital plane must contain the velocity vector, we have to enforce

I - Y
7 3=20 (7)

Substitution of equations (2) into equation (7) leads to a relationship which uncouples the

equations for ©(#) and i(6):
dQ tanf di
@ " Sni o )
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The velocity (6) can then be written

dr  dr df di
- = %B1 + T (1 + tan f cot z@> B, (9)

In the following part of this paper, we will obtain expressions for r(6), i(#), Q(f), and
dt/df(). The position and velocity vectors of the satellite then may be calculated from
the formulas in this section. The classical orbital elements p,e, and w are the semilatus
rectum, eccentricity, and argument of perigee of the instantaneous (osculating) conic section
determined by the position and velocity vectors. If needed, p(@), e(f), and w(f) can be

obtained from our solution r(f) and dt/df(6):

p= D)

GM (%)

ecos(f — w) -2
r

esin(f —w) = % (%)
r

3 Equations of Motion

The expressions for the kinetic and potential energies per unit mass of a satellite orbiting

around an oblate planet are respectively:

T = % {(%)2 + r? (%)2 + 7% cos’® B (2—?)2} (10)

M 2
_GM [1 + Jo Rt

272

V=

(1 - 3sin” 5)] (11)

r
where G is the gravitational constant, M is the mass of the planet, R is the equatorial radius
of the planet, and .J; is the constant coefficient of the spherical harmonic of degree 2 and
order 0 in the planet’s gravitational field. Substitution of these equations into Lagrange’s
equations

d T -Vv) 0

——(T-V)=0 g=r,a, or 3
dt 8(%) dq



results in the following equations of motion:

d*r g\’ , o [(da\® oV

ﬁ—T<E> — 7" COS <_t> __W (12)
L200¢2 g% =
7 (7" cos dt) 0

d [ ,dB\ . do\* oV

o (r dt>+r anﬁcosﬁ(dt) Y (13)

Initial conditions are established by requiring that at the initial time ¢, the orbital pa-
rameters of the usual two-body orbit, the conic section determined by the initial position and
velocity vectors, are known. The actual orbit is then tangent to this initial instantaneous
conic section at ty (see Figure 1). Equating the initial position and velocity vectors given by

equations (3) and (9) to the two-body expressions, we obtain

Po
_ 14
r(to) 1+ egcos(By — wy)’ "
dr eohg sin(90 - WO)
JR— pu— 1
dt (to) Po )
df h
_(to) - - - di (16)
dt g [1 + tan #y cot 1049 (90)]
i(0y) = ig (17)
Q(6,) = (18)

Here hg = /G Mpy is the initial value of the satellite’s specific angular momentum about the
center of the planet, and the subscript 0 on a symbol denotes that the parameter is evaluated
at the initial time ¢,.

We immediately have two integrals of the equations of motion:
T + V = constant (19)

r? cos® Bd_? = constant (20)



Equation (19) simply states that the mechanical energy of the satellite remains constant.

Now, from equations (1) and (16)

do dr .
r? cos? ﬂa =r X = b3 = hg cos iy (21)

Equation (21) simply states that the component along the polar axis of the specific angular
momentum of the satellite remains constant. Inserting equations (3) and (9) into equation

(21), we obtain

o hg cos g

dt  r?cosi
do

1+ tan@coti@> (22)

This allows the independent variable to be changed from ¢ to 6.
Letting u = po/r, and using equations (5), (21), and (22), we can rewrite the remaining

equations of motion (12)—(13):

di _ —2Jusinf cosfsinicos’ i (23)
do ngz + 2Jusin? @ cos? i
d2 2 J 2, d
d—GZ 4= COCSZ Ly C;S ! {uz(l — 3sin? #sin®7) + Qud—g sin @ cos f(1 — 3 cos? 1)
2 du\? 4J%usin® 0 cos® i
—4udf£ sin 0 cos? i — 2 (d_z> sin f cos? 7| — - 511(1:4 ol (24)

du . 9. d du . 2 .
lu@ cos (2 + sin” i) + 0 (u@> sin @ cos z]

The terms in (24) with d?u/d6? can be combined, yielding the equivalent equation

—[u*(1 + sin® (7 cos® i — 3))

d*u cos?i  Jcos?i
= +
c

du

du . 2 .
—|—2u@sm96059(1 —3cos”i) — 2 <d9

2
> sin? 0 cos? 1]

do do

4.J%u sin® 0 cos® i [
+ 1
¢

d du)’
u?sin @ cos?i — uw cos 0(2 + sin?4) — < u) sin @ cos® 2] } (25)

4Jusin?@cos*i  4J%u?sin* @ cos®i
Sy 2 + -
¢ c



Here we have introduced the shorthand notation ¢ = cosig, s = sinig, J = 3.J,R?/2p3.
4 Perturbation Procedure

The differential equations (23)-(24) are coupled by the nonlinear terms and apparently
cannot be solved analytically. If we expand the right sides of (23) and (25) in a Taylor series

expansion in powers of J and retain only terms up to order J2, the equations simplify to

d. _2J . 9 9 . . 3 . 4J2 2 . . 7 .
d_é _ usin c;s sinicos’ | 4J%u SLIZZCOS b in® 0 cos -+ O (26)
d2 2 J 2 —4 : 29 4 .
—dHZ +u = COCSZ ' 4 C;S Z{ USIHCZ sty u?[1 + sin? O(7 cos? i — 3)]
120l Gin 0 cos (1 — 3 cos? i) 2 (@) gin2 2'} (27)
u— sinfcos (1 — 3cos”i) — 2 [ — | sin®fcos’i
do do
4]%usin? 0 cos® i 3usin? § cos' i
usm4 Cos Z{UQ[_I 4 3sin (1 — 2cos? )] + u sin 2 cos® i
c c

2
+u% sin @ cos §[7 cos? i — 5] + (%) sin? 0 cos? 7,} +0(J%)

Here the term in the O symbols indicates that, for all sufficiently small .J, the error is less
than a constant times J®. The equations (26)-(27) are identical to those used as the starting
point in the analysis of Eckstein, et al.

It is reasonable to expect that the solution for u will be arbitrarily close to the two body

solution, 1 4 egcos(f — wp), when J is close to zero. This assumption is consistent with

letting
u=1+eycosy + Ju; + J>ug + ... (28)
y=10—wo+Jy+ Ty + ... (29)
i =g+ Jiy + JHig + ... (30)

An algorithm for the perturbation procedure is:

Letn=1

Substitute expressions (28)-(30) into the equations of motion (26)—(27)
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Equate the coefficients of J"

Choose the arbitrary constants so secular terms will not arise.
Solve for the n'" order solution

Satisfy the initial conditions (14)—(18)

Iterate on n

The calculations were carried out with the symbolic manipulation program MACSYMA.
In this paper we only briefly outline these calculations; for more details see the theses of
Sagovac and Snider.

Beginning by substituting equations (28) and (30) into (26), and equating the terms
multiplied by J, we obtain

% = —scsin 20 — &260 sin(y + 20) + % sin(y — 20) (31)

A solution to this equation is
= % cos 20 + % cos(y + 20) + % cos(y — 20) + Ky cos(2y — 20) + K, (32)

The last two terms may be added because they are to lowest order homogenous solutions
to equation (30). The term multiplied by the constant K; was added to eliminate secular
terms in iy; note that differentiating this term with respect to 6 produces terms multiplied
by J, from equation (29). The constant K, was added to satisfy the initial condition (17),

which implies that i;(6y) = 0 so

K, = —% cos 26y — % cos(30y — wp) — % cos(fy + wy) — K7 cos 2wy

Substituting equations (28)—(30) and (32) into (27), and equating terms multiplied by .J

yields
d?uy 3s2 ([ bHs? 1 2\ 2 9
e +u1:1—7+60 _T+1 +Z[(2+560)8 — 2¢3] cos 20
e 5 €, . 9 15e3
+Z(_93 + 8) cos2y + 3(113 — 6) cos(y + 20) + 51 (35° — 2) cos(2y + 20) (33)



2 2

2sK 2sK. d d
+ %(352—2)— SC 1]cos(2y—29)— SC ? + € (2%+4—582> COSy+€0Wy;SiH?J

In the above equation, the cosy and siny terms would produce secular terms #siny and
0 cosy in u;. The choice dy,/df = 5s*/2 — 2 will eliminate these possibilities. Integrating
yields

Y= (5782 — 2) (0 — 0y) + K3sin(2y — 26) + sin 2wy (34)

The term multiplied by K3 was added to eliminate secular terms in us. The constant terms
in (34) were added to satisfy the initial condition y(6y) = 6y — wo.

A solution to lowest order of equation (33) is then

35? —55? 1
u1:1_%+eg< 48 —|—1> +E[—82(2+56%)+263]C0829

2 2
—1—6—0(932 — 8) cos2y + ;—Z(—lls2 +6) cos(y + 20) + &(—352 + 2) cos(2y + 20) (35)

12 24
2 2sK 2sK
+[%(352—2)— i A2

c

] cos(2y — 20) — + Ky cos(y — 20)

+K5 COS(y - 90 + u)g) + K@ Sin(y - 90 + wo)

The term multiplied by K, was added to eliminate secular terms in u,. The terms multiplied
by K; and Kg were added to satisfy the initial conditions (14)(16).

With all terms in place to deal with secular terms, the calculations are continued by
substituting equations (28)—(30), (32), (34), and (35) into (26) and equating terms multiplied

by J2:
diy sced(15s? — 14)
— K
' 24(5s? — 4)

i sin(2y — 260) + ... (36)
We have for brevity only indicated on the right side of equation (36) the term that would
produce secular terms in i5. Removal of this term by making its coefficient zero determines
K;. Equation (36) is then integrated to determine i,.

Continuing the procedure by equating the terms multiplied by J? in the expansion of

equation (27) determines ys, K3, and K. Final values of all the constants are listed in

Appendix 1.
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Knowing the solution for i(f), we can determine () by integrating equation (8) and
applying the initial condition (18). The angle #, which increases continuously from an initial

value 6y, may be related to the time ¢ by numerically integrating (22).

5 Solution

Here we assemble the complete solution:

352 5s* 1 oy o )
ro= po/{l—i-eocosy—i-J[l—T—i-eo 1—7 —|—E(—(2—|—560)8 + 2e;) cos 20

2

2
+f—02(982 — 8) cos2y + ;—Z(—IISQ + 6) cos(y + 20) + ;—Z

2
—i—%(?)sZ — 2) cos(2y — 26)

(—3s5% + 2) cos(2y + 20)

eol15(2 + e2)s' — 14(4 + €3)s? + 24]sin [ (55> — 4)] sin[f + wo
12(5s2 — 4)

+

e3s?(155% — 14) sin [4f (557 — 4)| sin [2wy — 4 (557 —4)] 22

* 6(5s% — 4) 16

cos(y — by + 3wy)

o2 e3s?
—l—i(?)sZ — 2) cos(y — 36y + 3wp) — i—6 cos(y — 56 + 3wo) (37)

3eps?

—i—ezo(?)SZ —2) cos(y — 26y + 2wp) — cos(y — 40y + 2wy)

1
—%( 2+ 1) cos(y + 2wq) + §[(_2 + 5ep)s” — 2e2] cos(y + Oy + wp)

1
+Z[(6 +5e2)s® — 4(1 + e3)] cos(y — by + wo)

1
—l—ﬂ[—(lll + 5e5)s” + 23] cos(y — 36y + wp)

2

2
+z_08(952 — 4) cos(y + 30y — wy) + %(_752 +6) cos(y + 6 — wo)

2

+f—06(—552 +4) cos(y — 0y — wp)

€0
4

€o

* 4

(25* — 1) cos(y + 260p) + —(—3s% + 1) cos(y — 26y) + 6740(—352 +2) cosy

2
+e9s% cos(fy + wo) + % cos(30y — wp) + 5% cos 290]} + poO(J?, J30)

11



52
y = 9—w0+J<%—2> (0 — 6;)

) Je2 (=755° + 260s* — 29652 + 112) sin [4 (557 — 4)] cos 2wy — % (55° — 4)]
24(5s% — 4) (552 — 4)

2
+J0s%(—1552 + 14)(155% — 13) cos QwU} + J%{%(ws? —13) cos(fy + wo)

€052 2

—|—T(1532 —13) cos(36p — wo) + %(1532 — 13) cos 26,
1

+%[5(9e§ + 34)s* + 4(9ej — 34)s* — 56631} +O(J?, J?0) (38)

. . 1 €

i = g+ sct 5 cos 20 + Ecos(y—i— 20)

e2(—15s? 4+ 14) sin [‘]70 (5s% — 4)] sin [2w0 — 20 (55% — 4)]
12(552 — 4)

—|—6—20 cos(y — 20) +

1
5 cos 20y — %COS(SQO —wp) — %cos(@o + wg)} +O(J?, J%0) (39)

1 1
Q0 = QO+ch90 -0+ isin29—eosiny+e—60$in(y+29) — 6—20sin(y— 20) — §sin290

+egsin(fy — wp) — % sin(360y — wy) — % sin(6y + C()[))]

cJez  (2(15s" — 4557 + 28) sin [ 4 (55° — 4)] cos 2wy — % (557 — 4)]
12(5s%2 —4) { (5s% —4)
2
+J0s*(155* — 14) cos 2w0} + cJ?0 {—6082 cos(by + wy) — % cos(36p — wo)

2

1
—s2 0520y + (TP — ) + —(—s" + 6)] k+ O(J2, J*0) (40)

1 0 —352 42
t = t0+—/ 7"2{1+J{w00529+60(52—1)
h() 90 2

12



eo(—4s? + 3) N eo(—2s% +1)

cosy + — % cos(y + 20) cos(y — 26)
e2s?(15s? — 14) sin [‘]79 (5s% — 4)] sin [2w0 — 20 (55% — 4)]
+ (41)
12(5s2 — 4)
) s eos? eos? .
+s“—1+ 5 COS 290 + T COS(390 — (U()) + T COS(90 + (U()):| }d9 + h_O(J s J 9)
0

In obtaining the equations (37)—(41), use has been made of trigonometric formulas
to simplify terms containing the factor 55> — 4 in the denominator. In the form given,
these terms can clearly be seen to approach a finite limit at the “critical inclination”
iy = sin ! \/m = 63°26’ or 116°34’. Hence the solution is actually valid for all values
of ig. If |ig —sin™" \/%| < J, the formulas (37)—(41) can still be used by letting 5s*> —4 = J,
or the limiting forms for iy — sin* \/m can be used.

To check the solution, we can see if the specific mechanical energy (18) of the satellite
remains constant. Substitution of the solution (36)—(37) into equation (10) plus (11) yields

GM@—%)_GM@W@—3@F%)+GM

T+V=-—
2po 2ry Do

O(J?)

The right side is easily recognized as the value of the specific mechanical energy at the initial
time tg.

As a further check on the solution, we can see if it reduces to our previous results for
equatorial and polar orbits, obtained by completely separate derivations (Danielson and
Snider, 1989). Setting io = 0 and using the independent variable o measured from the line
O~, we find that equations (37)—(41) reduce to equations (18)—(22) of our previous paper.
Setting ip = 7/2 and using the expansion cos(y + Jk) ~ cosy — Jksiny, we find that
equations (37)—(41) reduce to equations (38)—(41) of our previous paper.

Comparing the terms in the O-symbols, we see that the relative error in equation (41)
may be greater than that of equations (37)-(40). Since the underlined terms in equations
(37)—(40) are of this same order of magnitude, we can drop the underlined terms except

when (37)—(38) are used to calculate r in equation (41). The relative error of our solution

13



will then still be of order (0 — 6,)J>.
If we retain only the two-body solution, the relative error terms will be of the order
(0 —6y)J. Here the error in our solution, as compared to the exact solution of the equations

of motion, should be of the order J times the error in the two-body solution (for an Earth

satellite J < .0015).

6 Comparison of Perturbation, Two-Body, Numerical, and Mea-

sured Solutions

In this section we compare the preceding perturbation solution, the two-body solution, a
completely numerical solution of the differential equations, and actual measured satellite
data; for more comparisons see the thesis of Krambeck. The difference between the position
vector r determined by the numerical integration code or measured data and the position
vector r calculated from our perturbation solution or the two-body solution is the error

Ar:

Ar =1 — It

If the errors (Ar, A, Ai, AQ) in the orbital parameters (r, 0,7, 2) are small, we can estimate

Ar from equation (4) and the linear approximation

or or or or
Ar EA r+ 89A9+ 5 —Aj —i—a—QAQ (42)

It is customary to decompose Ar into components (d1, d2, d3) along the moving triad (B, By, B3):
Ar = (51B1 + (SQBQ + (53B3

The component d; is called the radial error, do is the down track error, and d5 is the cross
track error. Applying (42) to equation (4), and expressing the base vectors (by, by, bs) in

terms of (B, By, B3), we obtain the following approximations:
o ~ Ar, 9y & (A0 + cosiAQ) , 03 ~ r(sin A7 — cos 0 sin iAQ) (43)

14



We obtained the numerical integration code UTOPIA from the Colorado Center for
Astrodynamics Research located on the campus of the University of Colorado. The code
was specialized to the differential equations used in this paper. We compared the solutions

for an earth satellite with the following initial conditions:

ro = 7,386.18 km

eo = .003991
o = 104.05°
wy = 224.38°
io = 90.03°
Qp = 322.63°
ty = 0

These initial conditions represent an essentially polar orbit at an altitude of approximately
1000 kilometers and period about 1% hours. For this satellite the perturbation and numerical
orbits match extremely well while the two-body orbit is grossly erroneous. The magnitude of
the error in r is shown in Figure 2. Note that the relative error in our perturbation solution
is 2.8.J%(0 — 6), and that this error is 1.1.J times the error in the two-body solution.

We obtained measured satellite data from the First Satellite Control Squadron located
at Falcon Air Force Base, Colorado. A near earth satellite processed the following initial

conditions:

ro = 7,776.58 km

eo = .0003071
6y = 149.14°
wy = 9.57°

ip = 98.81°

15



Qy = 37.10°

to = 0000Z 26 July 1990

Again, the perturbation orbit is far superior to the two-body orbit. The radial, down track,
and cross track errors (d1, d2, d3) are shown in Figure 3. Note that although the perturbation
solution produces only a small improvement in the radial error, this error is negligible in

comparison to the down track error.

7 Conclusions

Our solution embodies the principles outlined in the introduction. The relative error of our
solution is of order (f — 6y).J%, which is a factor of J times the relative error of the two-body
solution; our solution loses its validity after an angular change (8 — ) of order 1/.J%, which
is a factor of % longer than the interval of validity of the two-body solution. Secondly, our
solution is in terms of classical orbital elements; no transformation to an alternative non-
physical set of elements is required. Finally, our solution is free of singularities for all values
of the initial orbital parameters, including elliptic, parabolic, and hyperbolic orbits.

Our formulas should agree closely with satellite orbits whose dominant perturbation is
the planet’s oblateness. Of course, the effects of higher-order terms in these expansions,
higher-order terms in the planet’s potential, and of other perturbation forces may also be

important. The formulas will have to be amended to include these additional effects.

APPENDIX I: Values of the Constants K{—Kj

_ csef(—15s% 4 14)
o 24(5s2 —4)

cset(15s% — 14)
24(5s? — 4)

K, = —% cos 20, — % cos(30y — wy) — % cos(fy + wy) +

coS 2wy

—755% + 260s* — 29652 + 112)
48(5s? — 4)?

K =

16



[15(e2 + 2)st — 14(e2 + 4)s% + 24]

K, =
1o 24(552 — 4)
e e
K; = 1—02(—952 + 8) cos(20y — 2wy) + i(&s2 — 2) cos(46y — 2wy)

2
—(egs® + Ky) cos(fy + wp) + %0(82 — 2) cos(30y — wo) + %(—352 + 2) cos 2wy

1

1
_E[5(2 — e2)s? + 2¢2] cos 20y + E(lf’)eg +18)s* — (eg + 1)

2 2
Ko — +%(652 — 5)sin(20 — 2w) + %(—352 + 1) sin (46, — 2wp)

1
+§[60(—82 + 1) + 2K, sin(fy + wo) + %(382 — 2) sin(fy — wp)

2
1
+%(—752 + 2) sin(360p — wp) + %(—52 + 1) sin 2wy + 6[—(5@3 +2)s? + 2€2] sin 26,

APPENDIX II: Rigorous Bounds on the Orbit

It follows from (10)—(12) that

1(dr\> r d> GM GMJ,R?
T = — | — - — — 1— tn2
V=3 <dt> sar o g s

This can be rewritten in the form

d |, [(dr\? GMLR>,_ .,

o [r <%> ] =4(T+V)r+2GM + T(Bsm g—1)
from whence it follows that

2GM J, R?

r2

% {N (%) } < AT +V)r+2GM +

Integrating from r(to) to r(¢) yields

2G M J,R? 3h2.J, R?
. h% + Z0Tatr

2
r? (m) <2(T+V)r*+2GMr —
r PoTo

dt

It follows that

LR (44)

0<2(T+V)r*+2GMr — h3[1 —
PoTo
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When T + V' < 0, the quadratic polynomial on the right side of (44) has the roots (exact

values can be found from the quadratic formula)

Tmin = %[1 + O(J2)] ) Tmax = Do [1 + O(JZ)]

€ 1_60

Hence a satellite having negative mechanical energy remains for all time within the spherical
annulus 7y, < r < rmax. Since the position vector is bounded, we can invoke the recurrence
theorem; i.e., the satellite will come as close as desired to its initial position in a sufficiently
long period of time (as shown by Poincaré). Furthermore, we are guaranteed of the validity

of supressing secular terms to describe the orbit via perturbation analysis.
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Figure 1:  Orbital geometry.

Figure 2.  Comparison of perturbation, two-body, and numerical orbits.

Figure 3:  Comparison of perturbation, two-body, and measured orbits.
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